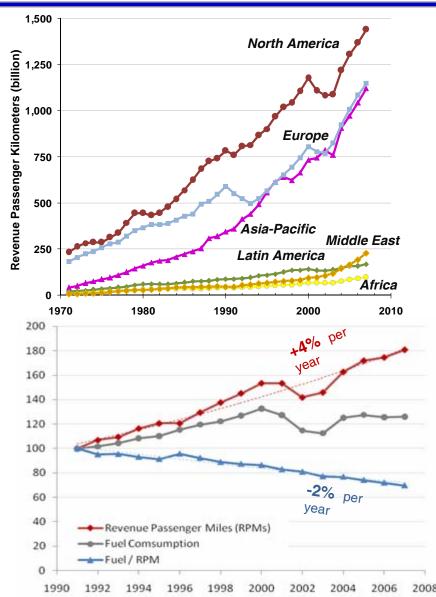


Evaluating Potential Measures to Reduce Aviation Fuel Consumption and Carbon Emissions

Philippe A. Bonnefoy

R. John Hansman


Rahul Kar

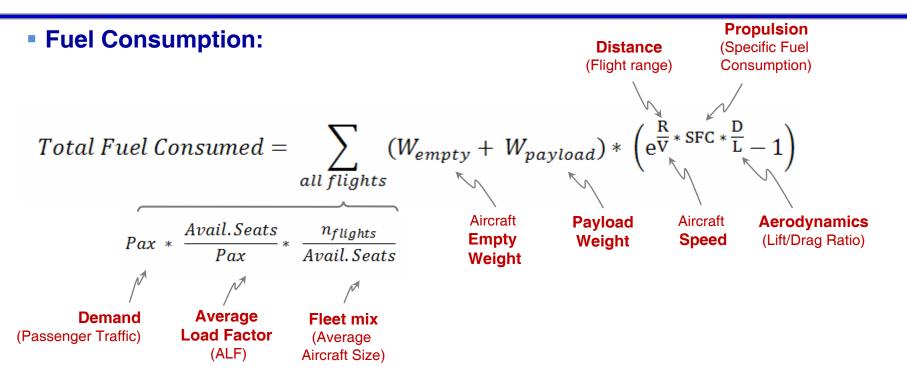
MIT Global Airline Industry Program - Industry Advisory Board Meeting Massachusetts Institute of Technology Nov. 6th 2008

- Increasing demand for air transportation worldwide
- Efficiency improvements evolve at a slower rate than demand
- Net fuel consumption and GHG emissions likely to increase
 - Current contribution of aviation to GHG emissions: 2% likely to increase to 5% ~ 15% by 2050 (IPCC)
- Public and political pressure about climate change likely to impact the aviation industry (e.g. Emission Trading Scheme in Europe)
- Further improvements and the implementation of mitigating measures are necessary for the industry to become sustainable

* Data sources: ICAO, IATA, DOT BTS T2 U.S. Air Carrier Traffic And Capacity Statistics by Aircraft Type

- Identification of mitigating measures to reduce fuel consumption and CO₂ emissions
 - Identify areas of improvement and mitigating measures (portfolio of measures),
 - Estimate efficiency improvements,
 - Estimate development time and diffusion time into the aviation industry,

Develop system dynamic model to:


- quantify overall impact of the mitigating measures,
- identify measures with the greatest potential for improvements and strategies for accelerating ,

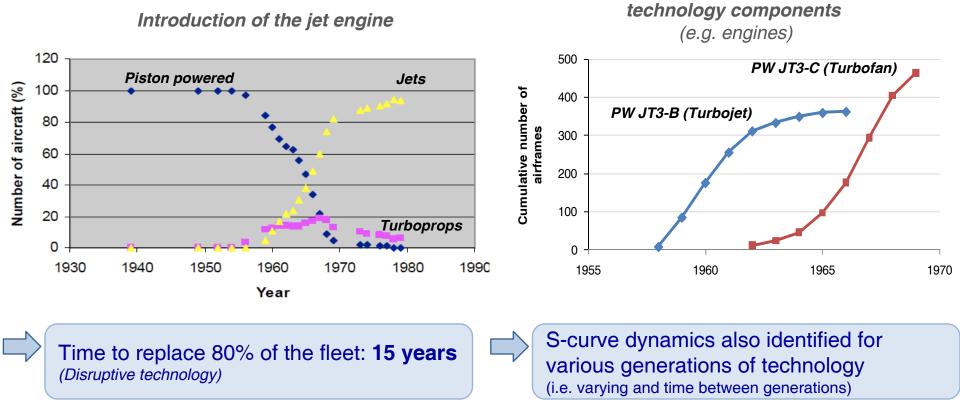
Policy analysis

Determine economic incentives to accelerate development time and technology diffusion,

Key Levers Influencing Fuel Consumption and CO2 Emissions

CO2 Emissions:

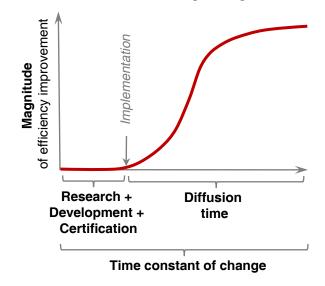
Fuel_i Consumed * $\frac{CO_2}{Gallons of fuel_i}$ $CO_2 emissions =$ all types of fuels CO₂ content in unit volume of fuel,



Categories of Mitigating Measures to Reduce Fuel Consumption & Emissions

Categories of Measures	Key Levers	Impact on Fuel Consumption	Impact on CO2 Emissions
Technology	 Propulsion Empty weight Aerodynamics 	Yes	Yes
Operations	- Propulsion - Empty weight - Payload weight - Aircraft speed - Distance	Yes	Yes
Network & Rev. Management	- Average Load Factor - Distance	Yes	Yes
Fleet Management	- Fleet Mix - Propulsion (Avg. SFC)	Yes	Yes
Demand	- Passengers (and cargo)	Yes	Yes
Alternative Fuels	- Energy input/sources	Limited	Yes

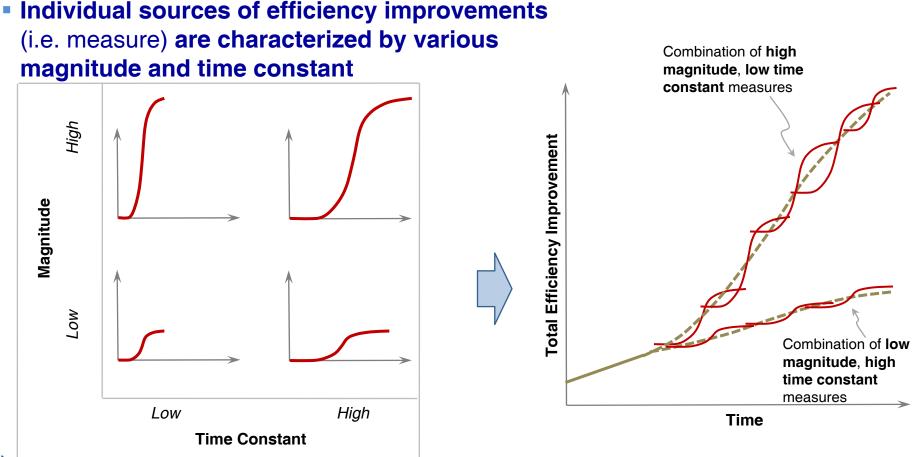
 The impact of these mitigating measures will depend on the magnitude of the improvements and the diffusion of these technologies, procedures, practices into the system



* Reference: NLR-CR-2005-669, "Fuel efficiency of commercial aircraft: An overview of historical and future trends", Peeters P.M.1, Middel J., Hoolhorst A

Note: Efficiency improvement between PW JT3-B and JT3-C: +30%

 Implementation and diffusion of new technologies, procedures, operating schemes, result in S-curves efficiency improvements


• Magnitude of the efficiency improvement depends on:

- Magnitude of the improvement from the specific measure,
- Fraction of the operation affected by the measure (e.g. ground vs. cruise),
- Adoption rate (i.e. number of aircraft equipped in the fleet).

Time constant of the change depends on:

- Time to implementation = Research + Development + Certification
- Diffusion time into the system (function of cost vs. benefits of the technology, procedures, practice, etc.),

How can a set of measures be combined to result in:

- High magnitude of total efficiency improvement,
- and short time constant?

Technology

New Aircraft

 $Total \ Fuel \ Consumed =$

$$(W_{empty} + W_{payload}) * \left(e^{\frac{R}{V} \cdot SFC} \left(\frac{D}{L} - 1 \right) \right)$$

- > Improved propulsion & power supply systems
 - ✓ Use engines with higher By-Pass-Ratio (e.g. Open rotor, Geared turbofan),
 - <u>Redesign combustors</u> for improved fuel burn,
 - Use <u>higher turbine inlet temperatures</u> by utilizing advanced materials and coatings,
 - Improve 3D flow through the engines using <u>3D blades</u> on compressor stages,
 - Replace APU's with <u>fuel cells</u>,
 - ✓ Others
- > Improved aerodynamics
 - Develop laminar flow wing profiles,
 - Develop <u>non-planar wings</u> (Winglets, Blended wings, Multiple wings, Box-wings, Joint wings,),
 - Develop <u>active wings</u>,
 - Develop <u>laminar surfaces</u> using coatings and paintings,
 - Design <u>nacelles with laminar profiles</u> and reduce drag,
 - Use <u>shock wave/boundary layer devices (like micro-vortex generators)</u> to reduce stagnation pressure loss,
 - ✓ Use <u>riblets</u>,
 - Use wings with <u>variable camber</u>,
 - Design <u>laminar vertical and horizontal tail plane</u>,
 - Reduce <u>area of tail plane</u>,
 - Develop <u>laminar flow suction systems</u> for wing, fuselage, stabilizers and nacelles,
 - Utilize <u>slotted cruise airfoils</u>,
 - Others

Technology

- New Aircraft
 - > Reduce Aircraft Empty Weight
 - ✓ Use lightweight material for primary structures (e.g. composites for construction),
 - Use <u>lightweight alloys</u> on secondary load bearing structures,
 - Use <u>lighter cabin seats</u>,
 - Remove <u>passive interior noise treatment(</u> wall bags, environment control ducts) by active noise control technology,

Total Fuel Consumed =

all flights

- Reduce <u>number paint coats</u> and weight,
- Make lavatories out of composite material,
- Implement <u>fly by wire</u>, fly by light technologies,
- Use <u>data bus for electrical systems</u>,
- <u>Integrate avionics</u> merge multiple systems,
- Use <u>electric systems to replace hydraulics</u> like electric braking systems,
- Use <u>composite wiring and connectors</u>,
- ✓ Others.

 $(W_{empty}) + W_{payload}) * \left(e^{\frac{R}{V} * SFC * \frac{D}{L}} - 1\right)$

Technology

Total Fuel Consumed =

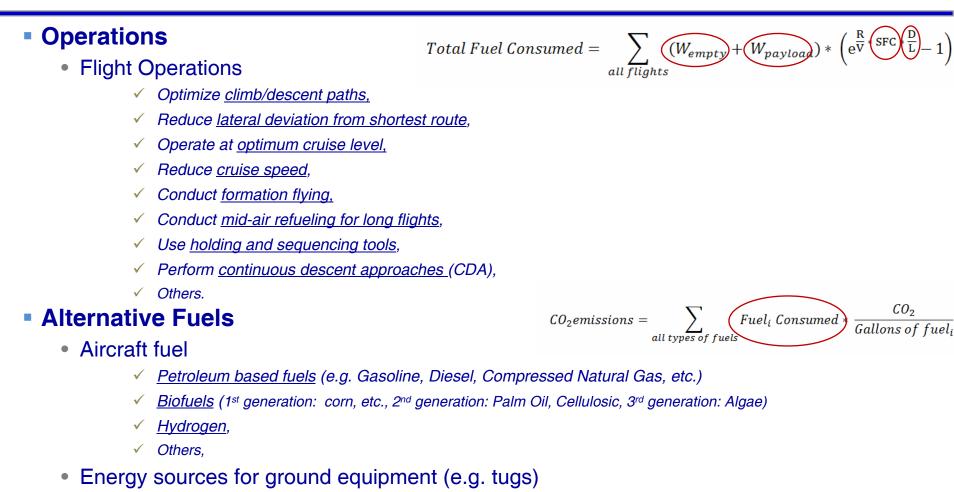
$$\sum_{all flights} (W_{empty} + W_{payload}) * \left(e^{\frac{R}{V}} (SFC) \frac{D}{L} - 1 \right)$$

- Retrofit Existing Aircraft
 - > Improve propulsion & power supply systems
 - Replace <u>existing engines</u> with new generation of engines
 - Upgrade <u>core with 3D compressor</u> blades, vanes and shrouds
 - ✓ Replace APU's with *fuel cells.*
 - ✓ Others

> Improve aerodynamics

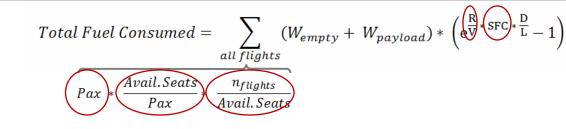
- Use <u>winglets/wingtip</u> devices,
- ✓ Use <u>riblets</u>,
- Apply <u>surface coatings</u> to reduce skin-friction drag
- ✓ Others
- > Reduce empty weight and payload
 - ✓ Use <u>lighter cabin seats</u>,
 - Remove <u>passive interior noise treatment(</u> wall bags, environment control ducts) by active noise control technology
 - Replace avionics,
 - Reconfigure airplane interior (e.g. remove galleys).

Operations


Total Fuel Consumed =

 $(W_{empty}) + (W_{payloag})$

all flights


- Reduce Empty Weight and Payload,
 - Use light weight <u>cargo containers</u>,
 - Limit/Change <u>fuel ferrying practices</u>,
 - Limit/charge for <u>number and weight baggage</u>,
 - Reduce <u>food onboard</u>,
 - Limited <u>carriage of extra potable water</u>,
 - Transition from paper manuals to <u>electronic freight bags (EFBs)</u>,
 - Remove <u>on-board passenger service equipment (e.g. pillows, covers, etc.)</u>
 - Reduce /eliminate <u>duty free goods</u>,
 - ✓ Others,
- Improve Aerodynamics & Performance,
 - Minimize trim drag by optimizing C.G. location (i.e. cahnge location of equipment/luggage)
 - Sequence <u>fuel burn between tanks</u>,
 - ✓ Others,
- Improve Ground Operations,
 - <u>Single engine taxi</u>,
 - Implement <u>controlled push back</u>,
 - Optimize ground paths,
 - Use tow-tugs instead of engine power for taxing,
 - ✓ Use <u>fixed electric ground power</u> instead of APU,
 - ✓ Use <u>starting grids</u>,
 - Others

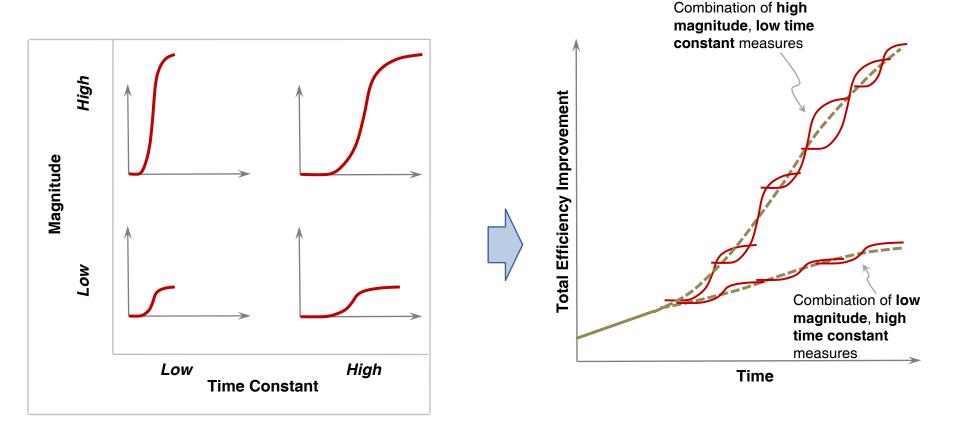
- ✓ <u>Petroleum based fuels (e.g. Gasoline, Diesel, Compressed Natural Gas, etc.)</u>
- ✓ <u>Electric</u>,
- ✓ <u>Biofuel</u>,
- <u>Hydrogen</u>,
- Others

Airline Network & Revenue Management

- Increase <u>load factor</u>,
- Break long haul flights into several short haul flights,
- Choose and operate at <u>less congested airports</u>,
- ✓ Others.

Airline Fleet Management

- Change <u>fleet mix</u> to impact <u>aircraft size</u>,
- Park older aircraft,
- Others.


Impacting Passenger Demand through Policies

- ✓ <u>Charge for CO₂</u> emissions (e.g. Emission Trading Scheme),
- Increase <u>taxes</u> on petroleum based fuels,
- ✓ Others.

Dynamics of Efficiency Improvements

Individual sources of efficiency improvements characterized by various magnitude and time constant

Preliminary Evaluation of the Magnitude of Improvements and Diffusion Time

Categories of Miti	gating Measures	Mitigating Measures	Magnitude of Fuel Efficiency Improvement	Diffusion Time
Technology	New aircraft	Next generation of aircraft	20%	Long
		Blended wing body	20-25%	40+ yrs
	Retrofit existing aircraft	Retrofit engines on existing aircraft	10-15%	Medium
	Aerodynamics	Winglets/Riblets	< 5%	< 5 yrs
	Weight Reduction	Lighter materials for airframe	6-10%	Long
	-	Retrofit aircraft interior (e.g. light weight seats)	Low	Medium
Operations	Flight operations	Reduce cruise speed	3 - 5%	Short
		Reduce vertical seperation	1 - 2%	Medium
		Reduce lateral deviation from shortest route	5 - 8%	Long
		Continous Descent Approach (CDA)	2%	Medium
	Ground operations	Single engine taxi	1%	Short
		Optimized ground path	1 - 2%	Medium
		Reduce weight by onboard service equipment	< 1%	< 1yr
	Propulsion	Engine washing	1%	3 -5 yrs
Network & Fleet		Change scheduling/fleet composition	Medium	Long
Management		Operate at less congested airports & reduce congestion	Medium	Medium
Alternative Fuels		Transition to Alternative Fuels (e.g.biofuels)**	High	Medium

Legend			
Magnitude of Fuel		Diffusion Time	
Efficiency Improvement		Diffusion fille	
High	>10%	Long	>10 yrs
Medium	5-10%	Medium	5-10 yrs
Low	<5%	Short	2-5 yrs

** Note: Improvements in GHG emissions only. No/Limited effects on fuel efficiency.

- Identified a broad set of mitigating measures to reduce fuel consumption and CO2 emissions -> Looking for feedback and input
- The greatest improvements in fuel consumptions and CO₂ emissions will be achieved through the implementation of mitigating measures with:
 - high magnitude improvements,
 - short implementation and diffusion time,

Future work will focus on;

- evaluating the magnitude of efficiency improvements and development and diffusion time for the broad set of measures,
- Identifying mechanisms and policies that can accelerate the development and diffusion time into the system.

Questions & Feedback

Thank you !